Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments.
نویسندگان
چکیده
In this work, parametric noise squeezing and parametric resonance are realized through the use of an electronic feedback circuit to excite a microcantilever with a signal proportional to the product of the microcantilever's displacement and a harmonic signal. The cantilever's displacement is monitored using an optical lever technique. By adjusting the gain of an amplifier in the feedback circuit, regimes of parametric noise squeezing/amplification and the principal and secondary parametric resonances of fundamental and higher order eigenmodes can be easily accessed. The exceptionally symmetric amplitude response of the microcantilever in the narrow frequency bandwidth is traced to a nonlinear parametric excitation term that arises due to the cubic nonlinearity in the output of the position-sensitive photodiode. The feedback circuit, working in both the regimes of parametric resonance and noise squeezing, allows an enhancement of the microcantilever's effective quality-factor (Q-factor) by two orders of magnitude under ambient conditions, extending the mass sensing capabilities of a conventional microcantilever into the sub-picogram regime. Likewise, experiments designed to parametrically oscillate a microcantilever in water using electronic feedback also show an increase in the microcantilever's effective Q-factor by two orders of magnitude, opening the field to high-sensitivity mass sensing in liquid environments.
منابع مشابه
Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring.
We report the confinement of an optomechanical micro-oscillator in a squeezed thermal state, obtained by parametric modulation of the optical spring. We propose and implement an experimental scheme based on parametric feedback control of the oscillator, which stabilizes the amplified quadrature while leaving the orthogonal one unaffected. This technique allows us to surpass the -3 dB limit in ...
متن کاملParametric Estimates of High Frequency Market Microstructure Noise as an Unsystematic Risk
Noise is essential for the existence of a liquid market, and if noise traders are not present in the market, the trade volume will drop severely and an important aspect of the market philosophy will be lost. However, these noise traders bring noise to the market, and the existence of noise in prices indicates a temporary deviation in prices from their fundamental values. In particular, high-fre...
متن کاملParametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator.
We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling to a Cooper-pair box qubit. By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and noise squeezing of 4 dB. This qubit-mediated effect is 3000 times more effective than that resulting from the weak nonlinearity of capacitance to a ne...
متن کاملParametric resonance in tunable superconducting cavities
We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric thresh...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 83 6 شماره
صفحات -
تاریخ انتشار 2012